Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Frédéric Thébault, Alexander J. Blake,* Neil R. Champness and Martin Schröder

School of Chemistry, The University of Nottingham, University Park, Nottingham NG7 2RD, England

Correspondence e-mail: a.j.blake@nottingham.ac.uk

Key indicators

Single-crystal X-ray study T = 150 K Mean σ (C–C) = 0.003 Å R factor = 0.036 wR factor = 0.069 Data-to-parameter ratio = 15.4

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Acetonitrilebis(nitrato- $\kappa^2 O, O'$)(1,10-phenan-throline)cobalt(II)

In the title compound, $[Co(NO_3)_2(C_2H_3N)(C_{12}H_8N_2)]$, the cobalt(II) centre adopts a seven-coordinate distorted pentagonal–bipyramidal geometry, being coordinated by a bidentate 1,10-phenanthroline, two bidentate nitrate anions and an acetonitrile ligand. The two axial sites are occupied by the acetonitrile ligand and one N-atom donor from the phenanthroline. The major distortions from ideal geometry occur within the equatorial plane, and are due to the narrow bite angle of the bidentate nitrate anions.

Comment

The field of coordination frameworks and their potential applications have been increasingly growing over the last few decades (Braga *et al.*, 2005; Champness *et al.*, 2006). Our studies have led us to investigate a variety of transition metal(II) nitrate salts in combination with soft N-donor ligands (Barnett *et al.*, 2001; Barnett *et al.*, 2003*a,b*; Blake *et al.*, 2000; Khlobystov *et al.*, 2003). During our investigations, we have encountered the title compound, (I), as a by-product from an attempt to prepare a coordination polymer with the ligand 4,4'-(1,4-phenylene)bis(3,6-dipyridin-2-ylpyridazine). Thus, a new crystal structure containing the widely studied 1,10-phenanthroline ligand has been obtained and characterized.

The cobalt(II) centre adopts a seven-coordinate distorted pentagonal-bipyramidal geometry, the donor atoms being two N atoms supplied by a bidentate 1,10-phenanthroline, four O atoms from two bidentate nitrate anions and an N atom from an acetonitrile ligand. The two axial sites are occupied by the acetonitrile ligand and one N-atom donor from the phenanthroline; as the other phenanthroline N-atom donor occupies an equatorial site, this ligand bridges axial and equatorial sites. The major distortions from ideal geometry occur within the equatorial plane, and are due to the narrow bite angle (ca. 57°) of the nitrate anions. Received 25 July 2006 Accepted 14 August 2006

Acta Cryst. (2006). E62, m2301–m2302

© 2006 International Union of Crystallography

All rights reserved

metal-organic papers

A dihedral angle of $4.05 (14)^{\circ}$ is observed between the least-squares planes through the two nitrate anions which occupy four of the five equatorial positions of the cobalt(II) coordination environment. Dihedral angles of 105.1 (12) and 108.7 (12)^{\circ} are observed between the plane through the 1,10-phenanthroline group and those of the nitrates.

Experimental

The title compound was prepared by slow reaction of $Co(NO_3)_2 \cdot 6H_2O$ (10 mg, 0.034 mmol) and 1,10-phenanthroline (6 mg, 0.033 mmol) in acetonitrile (10 ml) in the presence of 4,4'-(1,4-phenylene)bis(3,6-dipyridin-2-ylpyridazine). Crystals were left to grow over a period of six months before being taken from the mother liquor for single-crystal X-ray diffraction studies.

Z = 4

 $D_x = 1.692 \text{ Mg m}^{-3}$

 $0.14 \times 0.12 \times 0.10 \text{ mm}$

9772 measured reflections

3637 independent reflections

2323 reflections with $I > 2\sigma(I)$

Mo Ka radiation

 $\mu = 1.13 \text{ mm}^{-1}$

T = 150 (2) K

Block, orange

 $R_{\rm int} = 0.042$

 $\theta_{\rm max} = 27.5^\circ$

Crystal data

$$\begin{split} & [\text{Co}(\text{NO}_3)_2(\text{C}_2\text{H}_3\text{N})(\text{C}_{12}\text{H}_8\text{N}_2)]\\ & M_r = 404.2\\ & \text{Monoclinic, } P2_1/c\\ & a = 7.1414 \ (9) \text{ Å}\\ & b = 14.3837 \ (17) \text{ Å}\\ & c = 15.4670 \ (19) \text{ Å}\\ & \beta = 92.906 \ (2)^{\circ}\\ & V = 1586.7 \ (3) \text{ Å}^3 \end{split}$$

Data collection

Bruker SMART 1000 CCD areadetector diffractometer ω scans Absorption correction: multi-scan (*SHELXTL*; Bruker, 2001) $T_{\min} = 0.575$, $T_{\max} = 0.614$ (expected range = 0.840–0.896)

Refinement

Refinement on F^2 H-atom parameters constrained $R[F^2 > 2\sigma(F^2)] = 0.036$ $w = 1/[\sigma^2(F_o^2) + (0.0239P)^2]$ $wR(F^2) = 0.069$ where $P = (F_o^2 + 2F_c^2)/3$ S = 0.88 $(\Delta/\sigma)_{max} = 0.001$ 3637 reflections $\Delta\rho_{max} = 0.37$ e Å⁻³236 parameters $\Delta\rho_{min} = -0.32$ e Å⁻³

Table 1

Selected geometric parameters (Å, °).

Co-N1	2.1087 (19)	Co-O3	2.2583 (18)
Co-N2	2.1180 (19)	Co-O4	2.3289 (19)
Co-N5	2.079 (2)	Co-O5	2.1224 (17)
Co-O1	2.2375 (17)		
N1-Co-N2	78.48 (7)	N5-Co-O1	87.02 (7)
N1-Co-N5	95.89 (7)	N5-Co-O3	93.68 (7)
N1-Co-O3	137.22 (7)	N5-Co-O4	85.53 (7)
N1-Co-O4	86.07 (7)	N5-Co-O5	94.82 (7)
N1-Co-O5	141.12 (7)	O1-Co-O3	56.74 (6)
N1-Co-O1	82.23 (7)	O1-Co-O4	165.41 (6)
N2-Co-N5	172.54 (8)	O1-Co-O5	135.63 (6)
N2-Co-O1	87.36 (7)	O3-Co-O4	136.29 (6)
N2-Co-O3	87.34 (7)	O3-Co-O5	78.93 (6)
N2-Co-O4	98.85 (7)	O4-Co-O5	57.68 (6)
N2-Co-O5	92.63 (7)		

Figure 1

A view of the structure of the title compound, showing the atomnumbering scheme adopted. Displacement ellipsoids are drawn at the 50% probability level.

The methyl H atoms on the acetonitrile molecule were located in ΔF syntheses and refined as part of a rigid rotating group, with C–H = 0.98 Å and $U_{\rm iso}({\rm H}) = 1.5 U_{\rm eq}({\rm C})$. Aryl H atoms were positioned geometrically and refined using a riding model, with C–H = 0.95 Å.

Data collection: *SMART* (Bruker, 2001); cell refinement: *SAINT* (Bruker, 2001); data reduction: *SAINT* and *SHELXTL* (Bruker, 2001); program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *MERCURY* (Macrae *et al.*, 2006); software used to prepare material for publication: *enCIFer* (Allen *et al.*, 2004), *PLATON* (Spek, 2003) and publCIF (Westrip, 2006).

We thank EPSRC (UK) for support.

References

- Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.
- Barnett, S. A., Blake, A. J., Champness, N. R., Nicolson, J. E. B. & Wilson, C. (2001). J. Chem. Soc. Dalton Trans. pp. 567–573.
- Barnett, S. A., Blake, A. J., Champness, N. R. & Wilson, C. (2003b). Dalton Trans. pp. 2387–2394.
- Barnett, S. A. & Champness, N. R. (2003a). Coord. Chem. Rev. 246, 145–168.
 Blake, A. J., Champness, N. R., Khlobystov, A. N., Parsons, S. & Schröder, M. (2000). Angew. Chem. Int. Ed. 39, 2317–2320.
- (2000). Angew. Chem. Int. Ed. **39**, 2517–2520.
- Braga, D., Brammer, L. & Champness, N. R. (2005). *CrystEngComm*, 7, 1–19. Bruker (2001). *SADABS* (Version 2.03), *SAINT* (Version 6.36a), *SHELXTL*
- (Version 6.12) and *SMART* (Version 5.625). Bruker AXS Inc., Madison, Wisconsin, USA.
- Champness, N. R. (2006). Dalton Trans. pp. 877-880.
- Khlobystov, A. N., Brett, M. T., Blake, A. J., Champness, N. R., Gill, P. M. W., O'Neill, D. P., Teat, S. J., Wilson, C. & Schröder, M. (2003). J. Am. Chem. Soc. 125, 6753–6761.
- Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., van de Towler, M. & Streek, J. (2006). J. Appl. Cryst. 39, 453–457.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
- Westrip, S. P. (2006). In preparation.